Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.369
1.
Physiol Res ; 73(2): 239-251, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710061

Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.


Animals, Newborn , Bronchopulmonary Dysplasia , Disease Models, Animal , Oxidative Stress , Pneumonia , Resveratrol , Animals , Resveratrol/pharmacology , Oxidative Stress/drug effects , Bronchopulmonary Dysplasia/prevention & control , Bronchopulmonary Dysplasia/metabolism , Pneumonia/prevention & control , Pneumonia/metabolism , Pneumonia/chemically induced , Rats , Hyperoxia/complications , Hyperoxia/metabolism , Stilbenes/pharmacology , Stilbenes/therapeutic use , Antioxidants/pharmacology , Bronchial Hyperreactivity/prevention & control , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/chemically induced , Rats, Sprague-Dawley , Male
2.
J Transl Med ; 22(1): 457, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745204

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Resveratrol/pharmacology , Resveratrol/therapeutic use , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Humans , Inflammation/pathology , Inflammation/drug therapy , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Membrane Proteins/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Male
3.
BMC Cancer ; 24(1): 566, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711004

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


BRCA1 Protein , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Resveratrol , Triple Negative Breast Neoplasms , Resveratrol/pharmacology , Resveratrol/therapeutic use , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Receptors, Estrogen/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
4.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732545

Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.


Curcumin , Neurodegenerative Diseases , Neuroprotective Agents , Resveratrol , Neuroprotective Agents/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Curcumin/pharmacology , Resveratrol/pharmacology , Ergothioneine/pharmacology , Biological Products/pharmacology , Biological Products/therapeutic use , Phycocyanin/pharmacology , Animals , Cyanobacteria , Agaricales/chemistry , Microalgae
5.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731555

Anthocyanins are colored water-soluble plant pigments. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lowers the risk of neurodegenerative diseases. The copigmentation caused by copigments is considered an effective way to stabilize anthocyanins against adverse environmental conditions. This is attributed to the covalent and noncovalent interactions between colored forms of anthocyanins (flavylium ions and quinoidal bases) and colorless or pale-yellow organic molecules (copigments). The present work carried out a theoretical study of the copigmentation process between cyanidin and resveratrol (CINRES). We used three levels of density functional theory: M06-2x/6-31g+(d,p) (d3bj); ωB97X-D/6-31+(d,p); APFD/6-31+(d,p), implemented in the Gaussian16W package. In a vacuum, the CINRES was found at a copigmentation distance of 3.54 Å between cyanidin and resveratrol. In water, a binding free energy ∆G was calculated, rendering -3.31, -1.68, and -6.91 kcal/mol, at M06-2x/6-31g+(d,p) (d3bj), ωB97X-D/6-31+(d,p), and APFD/6-31+(d,p) levels of theory, respectively. A time-dependent density functional theory (TD-DFT) was used to calculate the UV spectra of the complexes and then compared to its parent molecules, resulting in a lower energy gap at forming complexes. Excited states' properties were analyzed with the ωB97X-D functional. Finally, Shannon aromaticity indices were calculated and isosurfaces of non-covalent interactions were evaluated.


Anthocyanins , Density Functional Theory , Resveratrol , Anthocyanins/chemistry , Resveratrol/chemistry , Thermodynamics , Models, Molecular , Water/chemistry
6.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674092

Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.


Antioxidants , Curcumin , Quercetin , Resveratrol , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/chemistry , Curcumin/pharmacology , Curcumin/therapeutic use , Resveratrol/pharmacology , Humans , Animals , Antioxidants/pharmacology , Neoplasms/prevention & control , Neoplasms/drug therapy , Neoplasms/metabolism , Chemoprevention/methods , Antineoplastic Agents/pharmacology , Polyphenols/pharmacology , Polyphenols/chemistry
7.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612856

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nanoparticles , Animals , Mice , Resveratrol/pharmacology , Neuroprotection , Administration, Intranasal , Encephalomyelitis, Autoimmune, Experimental/drug therapy
8.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613792

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Caenorhabditis elegans , Longevity , Oxidative Stress , Animals , Longevity/drug effects , Longevity/genetics , Oxidative Stress/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Resveratrol/pharmacology , Aging/drug effects , Aging/genetics , Genetic Background , Swimming , Piperazines/pharmacology , Stilbenes/pharmacology
9.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621878

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Hippo Signaling Pathway , Ovary , Pregnancy , Mice , Female , Male , Animals , bcl-2-Associated X Protein/metabolism , Resveratrol/pharmacology , Saline Solution/metabolism , Saline Solution/pharmacology , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
10.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673959

Ovarian cancer poses a significant threat to patients in its advanced stages, often with limited treatment options available. In such cases, palliative management becomes the primary approach to maintaining a reasonable quality of life. Therefore, the administration of any medication that can benefit patients without a curative option holds potential. Resveratrol, a natural compound known for its in vitro anticancer activities, has generated contrasting results in vivo and human studies. In this study, we aimed to assess the anticancer effects of resveratrol on ovarian cancer cells grown on the chorioallantoic membrane (CAM) of chicken embryos. Two ovarian cancer cell lines, OVCAR-8 and SKOV-3, were cultured in collagen scaffolds for four days before being implanted on the CAM of chicken embryos on day 7. Different doses of resveratrol were applied to the CAM every two days for six days. Subsequently, CAM tissues were excised, fixed, and subjected to histological analysis. Some CAM tumours were extracted to analyse proteins through Western blotting. Our findings indicate that specific doses of resveratrol significantly reduce angiogenic activities, pNF-κB levels, and SLUG protein levels by using immunohistochemistry. These results suggest that resveratrol may have the potential to impact the behaviour of ovarian cancer CAM tumours, thereby warranting further consideration as a complementary treatment option for women with incurable ovarian cancer.


Chorioallantoic Membrane , Ovarian Neoplasms , Resveratrol , Resveratrol/pharmacology , Chorioallantoic Membrane/drug effects , Animals , Female , Chick Embryo , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Humans , Cell Line, Tumor , Snail Family Transcription Factors/metabolism , Neovascularization, Pathologic/drug therapy , NF-kappa B/metabolism , Antineoplastic Agents, Phytogenic/pharmacology
11.
Int J Biol Macromol ; 267(Pt 1): 131304, 2024 May.
Article En | MEDLINE | ID: mdl-38569999

The study aimed to fabricate ß-Lactoglobulin-catechin (ß-La-Ca) conjugates as a natural designed antioxidant emulsifier to improve the physicochemical stability of resveratrol emulsion delivery system. Fourier transform infrared (FT-IR) and fluorescence spectroscopy analysis confirmed the formation of conjugates using free radical grafting. The antioxidant ability of emulsion was evaluated by DPPH scavenging activities and ORAC experiments. The emulsion stabilized by ß-La-Ca conjugates exhibited strong antioxidant activity with ORAC value of 2541.39 ± 29.58 µmol TE/g, which was significantly higher than that by ß-Lactoglobulin alone with 387.96 ± 23.45 µmol TE/g or their mixture with 948.23 ± 32.77 µmol TE/g. During the whole simulated gastrointestinal digestion, emulsion stabilized by ß-La-Ca conjugates exhibited excellent oxidative stability that the lipid was mainly digested in the small intestine. This behavior attributed to the greater stability of resveratrol to chemical transformation leading to a higher overall bioavailability in vivo. These results suggested that the ß-La-Ca conjugates could be used to fabricate the emulsion-based delivery system to improve the oxidative stability and bioavailability of chemically labile hydrophobic bioactive compounds.


Antioxidants , Biological Availability , Catechin , Emulsions , Lactoglobulins , Resveratrol , Resveratrol/chemistry , Resveratrol/pharmacokinetics , Resveratrol/pharmacology , Lactoglobulins/chemistry , Emulsions/chemistry , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Catechin/chemistry , Catechin/pharmacokinetics , Spectroscopy, Fourier Transform Infrared , Oxidation-Reduction
12.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Article En | MEDLINE | ID: mdl-38573228

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Diet, High-Fat , Mitochondria , Pregnancy Outcome , Resveratrol , Uterus , Animals , Resveratrol/pharmacology , Female , Pregnancy , Mice , Diet, High-Fat/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Uterus/metabolism , Uterus/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism
14.
Molecules ; 29(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38675538

Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.


Antioxidants , Breast Neoplasms , Macrophages , Female , Humans , Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Curcumin/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Resveratrol/pharmacology , THP-1 Cells
15.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38612425

Resveratrol is a polyphenol present in various plant sources. Studies have reported numerous potential health benefits of resveratrol, exhibiting anti-aging, anti-inflammatory, anti-microbial, and anti-carcinogenic activity. Due to the reported effects, resveratrol is also being tested in reproductive disorders, including female infertility. Numerous cellular, animal, and even human studies were performed with a focus on the effect of resveratrol on female infertility. In this review, we reviewed some of its molecular mechanisms of action and summarized animal and human studies regarding resveratrol and female infertility, with a focus on age-related infertility, polycystic ovary syndrome, and endometriosis.


Endometriosis , Infertility, Female , Animals , Female , Humans , Infertility, Female/drug therapy , Resveratrol/pharmacology , Resveratrol/therapeutic use , Endometriosis/drug therapy , Polyphenols , Aging
16.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612556

Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.


Fatty Liver , Metabolic Diseases , Animals , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Antioxidants , Inflammation
17.
Nutrients ; 16(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38613119

Resveratrol (RES) has been reported to prevent hyperuricemia (HUA); however, its effect on intestinal uric acid metabolism remains unclear. This study evaluated the impact of RES on intestinal uric acid metabolism in mice with HUA induced by a high-fat diet (HFD). Moreover, we revealed the underlying mechanism through metagenomics, fecal microbiota transplantation (FMT), and 16S ribosomal RNA analysis. We demonstrated that RES reduced the serum uric acid, creatinine, urea nitrogen, and urinary protein levels, and improved the glomerular atrophy, unclear renal tubule structure, fibrosis, and renal inflammation. The results also showed that RES increased intestinal uric acid degradation. RES significantly changed the intestinal flora composition of HFD-fed mice by enriching the beneficial bacteria that degrade uric acid, reducing harmful bacteria that promote inflammation, and improving microbial function via the upregulation of purine metabolism. The FMT results further showed that the intestinal microbiota is essential for the effect of RES on HUA, and that Lactobacillus may play a key role in this process. The present study demonstrated that RES alleviates HFD-induced HUA and renal injury by regulating the gut microbiota composition and the metabolism of uric acid.


Gastrointestinal Microbiome , Hyperuricemia , Animals , Mice , Hyperuricemia/drug therapy , Resveratrol/pharmacology , Uric Acid , Kidney Tubules , Inflammation
18.
Sci Rep ; 14(1): 9107, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643283

Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.


Extracellular Traps , Humans , Extracellular Traps/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Hydrogen Peroxide/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism
19.
Life Sci ; 346: 122638, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614294

AIMS: Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches. MAIN METHODS: The current study developed RSV-loaded MEXOs to enhance the RSV oral bioavailability, introducing a suitable exosomal formulation for suppressing colon inflammation in acetic acid-induced rat models. KEY FINDINGS: The results showed a remarkable encapsulation efficiency of 83.33 %. The in vitro release profile demonstrated a good retaining capability in acidic conditions (pH 1.2) and a considerable release in a simulated duodenal environment (pH 6.8). According to the permeability study, encapsulation of RSV improved its transportation across the Caco-2 monolayer. Moreover, the in vivo and histological analysis results proved that the RSV-MEXOs formulation successfully alleviates the inflammation in colitis rat models and effectively relieves the colitis. SIGNIFICANCE: Our findings suggest that MEXOs should be of great attention as promising oral drug delivery vehicles for further clinical evaluations.


Disease Models, Animal , Exosomes , Inflammatory Bowel Diseases , Resveratrol , Animals , Resveratrol/administration & dosage , Resveratrol/pharmacology , Resveratrol/pharmacokinetics , Rats , Administration, Oral , Exosomes/metabolism , Caco-2 Cells , Humans , Male , Inflammatory Bowel Diseases/drug therapy , Drug Delivery Systems/methods , Rats, Sprague-Dawley , Biological Availability , Milk , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology
20.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Article En | MEDLINE | ID: mdl-38561102

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Ferroptosis , Myocardial Reperfusion Injury , Animals , Mice , Myocytes, Cardiac , Resveratrol/pharmacology , Voltage-Dependent Anion Channel 1 , Ischemia , Hypoxia , Myocardial Reperfusion Injury/prevention & control , Reperfusion
...